There is an 8×8 chessboard in a room and each square is occupied by a coin with random face up or tail up. Prisoner A enters the room and sees the Warden points to one of the squares. Prisoner A chooses any one of the 64 coins (same or different with what Warden has chosen) and flips the coin. Then Prisoner A leaves the room without any communication with Prisoner B. Now Prisoner B enters the room and guesses the square that the Warden has pointed to by looking at the chessboard. How did the Prisoners make it possible?

Coin Flipping Puzzle Solution

Number the squares with 0 to 63.

Let b_1, b_2, \dots, b_k be the numbers associated with black squares.

Let *s* be the number associated with the square chosen by the Warden.

Prisoner A flips the coin with number $s \bigoplus b_1 \bigoplus b_2 \bigoplus \cdots \bigoplus b_k$

Prisoner B answers the square associated with the nim sum of the numbers associated with black squares.